Stream Evaluator Reference
Stream evaluators are different then stream sources or stream decorators. Both stream sources and stream decorators return streams of tuples. Stream evaluators are more like a traditional function that evaluates its parameters and returns an result. That result can be a single value, array, map or other structure.
Stream evaluators can be nested so that the output of an evaluator becomes the input for another evaluator.
Stream evaluators can be called in different contexts. For example a stream evaluator can be called on its own or it can be called within the context of a streaming expression.
abs
The abs
function will return the absolute value of the provided single parameter. The abs
function will fail to execute if the value is non-numeric. If a null value is found then null will be returned as the result.
abs Parameters
Field Name | Raw Number | Number Evaluator
abs Syntax
The expressions below show the various ways in which you can use the abs
evaluator. Only one parameter is accepted. Returns a numeric value.
abs(1) // 1, not really a good use case for it
abs(-1) // 1, not really a good use case for it
abs(add(fieldA,fieldB)) // absolute value of fieldA + fieldB
abs(fieldA) // absolute value of fieldA
acos
The acos
function returns the trigonometric arccosine of a number.
acos Parameters
Field Name | Raw Number | Number Evaluator
: The value to return the arccosine of.
acos Syntax
acos(100.4) // returns the arccosine of 100.4
acos(fieldA) // returns the arccosine for fieldA.
if(gt(fieldA,fieldB),sin(fieldA),sin(fieldB)) // if fieldA > fieldB then return the arccosine of fieldA, else return the arccosine of fieldB
add
The add
function will take 2 or more numeric values and add them together. The add
function will fail to execute if any of the values are non-numeric. If a null value is found then null will be returned as the result.
add Parameters
Field Name | Raw Number | Number Evaluator
Field Name | Raw Number | Number Evaluator
……
Field Name | Raw Number | Number Evaluator
add Syntax
The expressions below show the various ways in which you can use the add
evaluator. The number and order of these parameters do not matter and is not limited except that at least two parameters are required. Returns a numeric value.
add(1,2,3,4) // 1 + 2 + 3 + 4 == 10
add(1,fieldA) // 1 + value of fieldA
add(fieldA,1.4) // value of fieldA + 1.4
add(fieldA,fieldB,fieldC) // value of fieldA + value of fieldB + value of fieldC
add(fieldA,div(fieldA,fieldB)) // value of fieldA + (value of fieldA / value of fieldB)
add(fieldA,if(gt(fieldA,fieldB),fieldA,fieldB)) // if fieldA > fieldB then fieldA + fieldA, else fieldA + fieldB
analyze
The analyze
function analyzes text using a Lucene/Solr analyzer and returns a list of tokens
emitted by the analyzer. The analyze
function can be called on its own or within the
select
and cartesianProduct
streaming expressions.
analyze Parameters
Field Name
|Raw Text
: Either the field in a tuple or the raw text to be analyzed.Analyzer Field Name
: The field name of the analyzer to use to analyze the text.
analyze Syntax
The expressions below show the various ways in which you can use the analyze
evaluator.
Analyze the raw text:
analyze("hello world", analyzerField)
Analyze a text field within a
select
expression. This will annotate tuples with the output of the analyzer:select(expr, analyze(textField, analyzerField) as outField)
Analyze a text field with a
cartesianProduct
expression. This will stream each token emitted by the analyzer in its own tuple:cartesianProduct(expr, analyze(textField, analyzer) as outField)
and
The and
function will return the logical AND of at least 2 boolean parameters. The function will fail to execute if any parameters are non-boolean or null. Returns a boolean value.
and Parameters
Field Name | Raw Boolean | Boolean Evaluator
Field Name | Raw Boolean | Boolean Evaluator
……
Field Name | Raw Boolean | Boolean Evaluator
and Syntax
The expressions below show the various ways in which you can use the and
evaluator. At least two parameters are required, but there is no limit to how many you can use.
and(true,fieldA) // true && fieldA
and(fieldA,fieldB) // fieldA && fieldB
and(or(fieldA,fieldB),fieldC) // (fieldA || fieldB) && fieldC
and(fieldA,fieldB,fieldC,or(fieldD,fieldE),fieldF)
anova
The anova
function calculates the analysis of variance for two or more numeric arrays.
anova Parameters
numeric array
… (two or more)
anova Syntax
anova(numericArray1, numericArray2) // calculates ANOVA for two numeric arrays
anova(numericArray1, numericArray2, numericArray2) // calculates ANOVA for three numeric arrays
array
The array
function returns an array of numerics or other objects including other arrays.
array Parameters
numeric
|array
…
array Syntax
array(1, 2, 3) // Array of numerics
array(array(1,2,3), array(4,5,6)) // Array of arrays
asin
The asin
function returns the trigonometric arcsine of a number.
asin Parameters
Field Name | Raw Number | Number Evaluator
: The value to return the arcsine of.
asin Syntax
asin(100.4) // returns the sine of 100.4
asine(fieldA) // returns the sine for fieldA.
if(gt(fieldA,fieldB),asin(fieldA),asin(fieldB)) // if fieldA > fieldB then return the asine of fieldA, else return the asine of fieldB
atan
The atan
function returns the trigonometric arctangent of a number.
atan Parameters
Field Name | Raw Number | Number Evaluator
: The value to return the arctangent of.
atan Syntax
atan(100.4) // returns the arctangent of 100.4
atan(fieldA) // returns the arctangent for fieldA.
if(gt(fieldA,fieldB),atan(fieldA),atan(fieldB)) // if fieldA > fieldB then return the arctanget of fieldA, else return the arctangent of fieldB
betaDistribution
The betaDistribution
function returns a beta probability distribution
based on its parameters. This function is part of the
probability distribution framework and is designed to work with the sample
, kolmogorovSmirnov
and cumulativeProbability
functions.
betaDistribution Parameters
double
: shape1double
: shape2
betaDistribution Returns
A probability distribution function.
betaDistribution Syntax
betaDistribution(1, 5)
binomialCoefficient
The binomialCoefficient
function returns a Binomial Coefficient, the number of k-element subsets that can
be selected from an n-element set.
binomialCoefficient Parameters
integer
: [n] setinteger
: [k] subset
binomialCoefficient Returns
A long value: The number of k-element subsets that can be selected from an n-element set.
binomialCoefficient Syntax
binomialCoefficient(8, 3) // Returns the number of 3 element subsets from an 8 element set.
binomialDistribution
The binomialDistribution
function returns a binomial probability distribution
based on its parameters. This function is part of the probability distribution framework and is designed to
work with the sample
, probability
and cumulativeProbability
functions.
binomialDistribution Parameters
integer
: number of trialsdouble
: probability of success
binomialDistribution Returns
A probability distribution function.
binomialDistribution Syntax
binomialDistribution(1000, .5)
cbrt
The cbrt
function returns the trigonometric cube root of a number.
cbrt Parameters
Field Name | Raw Number | Number Evaluator
: The value to return the cube root of.
cbrt Syntax
cbrt(100.4) // returns the square root of 100.4
cbrt(fieldA) // returns the square root for fieldA.
if(gt(fieldA,fieldB),cbrt(fieldA),cbrt(fieldB)) // if fieldA > fieldB then return the cbrt of fieldA, else return the cbrt of fieldB
ceil
The ceil
function rounds a decimal value to the next highest whole number.
ceil Parameters
Field Name | Raw Number | Number Evaluator
: The decimal to round up.
ceil Syntax
The expressions below show the various ways in which you can use the ceil
evaluator.
ceil(100.4) // returns 101.
ceil(fieldA) // returns the next highest whole number for fieldA.
if(gt(fieldA,fieldB),ceil(fieldA),ceil(fieldB)) // if fieldA > fieldB then return the ceil of fieldA, else return the ceil of fieldB.
col
The col
function returns a numeric array from a list of Tuples. The col
function is used to create numeric arrays from stream sources.
col Parameters
list of Tuples
field name
: The field to create the array from.
col Syntax
col(tupleList, fieldName)
colAt
The colAt
function returns the column of a matrix at a specific index as a numeric array.
colAt Parameters
matrix
: the matrix to operate oninteger
: the index of the column to return
colAt Syntax
colAt(matrix, 10)
colAt Returns
numeric array: the column of the matrix
columnCount
The columnCount
function returns the number of columns in a matrix
.
columnCount Parameters
matrix
: the matrix to operate on
columnCount Syntax
columnCount(matrix)
columnCount Returns
integer: number columns in the matrix.
constantDistribution
The constantDistribution
function returns a constant probability distribution based on its parameter.
This function is part of the probability distribution framework and is designed to
work with the sample
and cumulativeProbability
functions.
When sampled the constant distribution always returns its constant value.
constantDistribution Parameters
double
: constant value
constantDistribution Returns
A probability distribution function.
constantDistribution Syntax
constantDistribution(constantValue)
conv
The conv
function returns the convolution of two numeric arrays.
conv Parameters
numeric array
numeric array
conv Syntax
conv(numericArray1, numericArray2)
copyOf
The copyOf
function creates a copy of a numeric array.
copyOf Parameters
numeric array
length
: The length of the copied array. The returned array will be right padded with zeros if the length parameter exceeds the size of the original array.
copyOf Syntax
copyOf(numericArray, length)
copyOfRange
The copyOfRange
function creates a copy of a range of a numeric array.
copyOfRange Parameters
numeric array
start index
end index
copyOfRange Syntax
copyOfRange(numericArray, startIndex, endIndex)
corr
The corr
function returns the correlation of two numeric arrays or the correlation matrix for a matrix.
The corr
function support Pearson’s, Kendall’s and Spearman’s correlations.
corr Positional Parameters
numeric array
: The first numeric arraynumeric array
: The second numeric array
OR
matrix
: The matrix to compute the correlation matrix for. Note that correlation is computed between thecolumns
in the matrix.
corr Named Parameters
type
: (Optional) The type of correlation. Possible values arepearsons
,kendalls
, orspearmans
. The default ispearsons
.
corr Syntax
corr(numericArray1, numericArray2) // Compute the Pearsons correlation for two numeric arrays
corr(numericArray1, numericArray2, type=kendalls) // Compute the Kendalls correlation for two numeric arrays
corr(matrix) // Compute the Pearsons correlation matrix for a matrix
corr(matrix, type=spearmans) // Compute the Spearmans correlation matrix for a matrix
corr Returns
number | matrix: Either the correlation or correlation matrix.
cos
The cos
function returns the trigonometric cosine of a number.
cos Parameters
Field Name | Raw Number | Number Evaluator
: The value to return the hyperbolic cosine of.
cos Syntax
cos(100.4) // returns the arccosine of 100.4
cos(fieldA) // returns the arccosine for fieldA.
if(gt(fieldA,fieldB),cos(fieldA),cos(fieldB)) // if fieldA > fieldB then return the arccosine of fieldA, else return the cosine of fieldB
cosineSimilarity
The cosineSimilarity
function returns the cosine similarity of two numeric arrays.
cosineSimilarity Parameters
numeric array
numeric array
cosineSimilarity Returns
A numeric.
cosineSimilarity Syntax
cosineSimilarity(numericArray, numericArray)
cov
The cov
function returns the covariance of two numeric array or the covariance matrix for matrix.
cov Parameters
numeric array
: The first numeric arraynumeric array
: The second numeric array
OR
matrix
: The matrix to compute the covariance matrix from. Note that covariance is computed between thecolumns
in the matrix.
cov Syntax
cov(numericArray, numericArray) // Computes the covariance of a two numeric arrays
cov(matrix) // Computes the covariance matrix for the matrix.
cov Returns
number | matrix: Either the covariance or covariance matrix.
cumulativeProbability
The cumulativeProbability
function returns the cumulative probability of a random variable within a
probability distribution. The cumulative probability is the total probability of
all random variables less then or equal to a random variable.
cumulativeProbability Parameters
probability distribution
number
: Value to compute the probability for.
cumulativeProbability Returns
A double: the cumulative probability.
cumulativeProbability Syntax
cumulativeProbability(normalDistribution(500, 25), 502) // Returns the cumulative probability of the random sample 502 in a normal distribution with a mean of 500 and standard deviation of 25.
derivative
The derivative
function returns the derivative of a function. The derivative function
can compute the derivative of the spline function and the loess function. The derivative can also
take the derivative of a derivative.
derivative Parameters
spline
|loess
|akima
|lerp
|derivative
: The functions to compute the derivative for.
derivative Syntax
derivative(spline(...))
derivative(loess(...))
derivative(derivative(...))
derivative Returns
function: The function can be treated as both a numeric array
and function
.
describe
The describe
function returns a tuple containing the descriptive statistics for an array.
describe Parameters
numeric array
describe Syntax
describe(numericArray)
diff
The diff
functions performs time series differencing.
Time series differencing is often used to make a time series stationary before further analysis.
diff Parameters
numeric array
: The time series data.integer
: (Optional) The lag. Defaults to 1.
diff Syntax
diff(numericArray1) // Perform time series differencing with a default lag of 1.
diff(numericArray1, 30) // Perform time series differencing with a lag of 30.
diff Returns
numeric array: The differenced time series data. The size of the array will be equal to (original array size - lag).
distance
The distance
function computes the distance of two numeric arrays or the distance matrix for a matrix.
distance Positional Parameters
numeric array
: The first numeric arraynumeric array
: The second numeric array
OR
matrix
: The matrix to compute the distance matrix for. Note that distance is computed between thecolumns
in the matrix.
distance Named Parameters
type
: (Optional) The distance type. Possible values areeuclidean
,manhattan
,canberra
, orearthMovers
. The default iseuclidean
.
distance Syntax
distance(numericArray1, numericArray2) // Computes the euclidean distance for two numeric arrays.
distance(numericArray1, numericArray2, type=manhattan) // Computes the manhattan distance for two numeric arrays.
distance(matrix) // Computes the euclidean distance matrix for a matrix.
distance(matrix, type=canberra) // Computes the canberra distance matrix for a matrix.
distance Returns
number | matrix: Either the distance or distance matrix.
div
The div
function will take two numeric values and divide them. The function will fail to execute if any of the values are non-numeric or null, or the 2nd value is 0. Returns a numeric value.
div Parameters
Field Name | Raw Number | Number Evaluator
Field Name | Raw Number | Number Evaluator
div Syntax
The expressions below show the various ways in which you can use the div
evaluator. The first value will be divided by the second and as such the second cannot be 0.
div(1,2) // 1 / 2
div(1,fieldA) // 1 / fieldA
div(fieldA,1.4) // fieldA / 1.4
div(fieldA,add(fieldA,fieldB)) // fieldA / (fieldA + fieldB)
dotProduct
The dotProduct
function returns the dotproduct of two numeric arrays.
dotProduct Parameters
numeric array
numeric array
dotProduct Returns
A number.
dotProduct Syntax
dotProduct(numericArray, numericArray)
ebeAdd
The ebeAdd
function performs an element-by-element addition of two numeric arrays.
ebeAdd Parameters
numeric array
numeric array
ebeAdd Returns
A numeric array.
ebeAdd Syntax
ebeAdd(numericArray, numericArray)
ebeDivide
The ebeDivide
function performs an element-by-element division of two numeric arrays.
ebeDivide Parameters
numeric array
numeric array
ebeDivide Returns
A numeric array.
ebeDivide Syntax
ebeDivide(numericArray, numericArray)
ebeMultiple
The ebeMultiply
function performs an element-by-element multiplication of two numeric arrays.
ebeMultiply Parameters
numeric array
numeric array
ebeMultiply Returns
A numeric array.
ebeMultiply Syntax
ebeMultiply(numericArray, numericArray)
ebeSubtract
The ebeSubtract
function performs an element-by-element subtraction of two numeric arrays.
ebeSubtract Parameters
numeric array
numeric array
ebeSubtract Returns
A numeric array.
ebeSubtract Syntax
ebeSubtract(numericArray, numericArray)
empiricalDistribution
The empiricalDistribution
function returns empirical distribution function, a continuous probability distribution function based
on an actual data set. This function is part of the probability distribution framework and is designed to work with the sample
, kolmogorovSmirnov
and cumulativeProbability
functions.
This function is designed to work with continuous data. To build a distribution from
a discrete data set use the enumeratedDistribution
.
empiricalDistribution Parameters
numeric array
: empirical observations
empiricalDistribution Returns
A probability distribution function.
empiricalDistribution Syntax
empiricalDistribution(numericArray)
enumeratedDistribution
The enumeratedDistribution
function returns a discrete probability distribution function based
on an actual data set or a pre-defined set of data and probabilities.
This function is part of the probability distribution framework and is designed to
work with the sample
, probability
and cumulativeProbability
functions.
The enumeratedDistribution can be called in two different scenarios:
1) Single array of discrete values. This works like an empirical distribution for discrete data.
2) An array of singleton discrete values and an array of double values representing the probabilities of the discrete values.
This function is designed to work with discrete data. To build a distribution from
a continuous data set use the empiricalDistribution
.
enumeratedDistribution Parameters
integer array
: discrete observations or singleton discrete values.double array
: (Optional) values representing the probabilities of the singleton discrete values.
enumeratedDistribution Returns
A probability distribution function.
enumeratedDistribution Syntax
enumeratedDistribution(integerArray) // This creates an enumerated distribution from the observations in the numeric array.
enumeratedDistribution(array(1,2,3,4), array(.25,.25,.25,.25)) // This creates an enumerated distribution with four discrete values (1,2,3,4) each with a probability of .25.
eor
The eor
function will return the logical exclusive or of at least two boolean parameters. The function will fail to execute if any parameters are non-boolean or null. Returns a boolean value.
eor Parameters
Field Name | Raw Boolean | Boolean Evaluator
Field Name | Raw Boolean | Boolean Evaluator
……
Field Name | Raw Boolean | Boolean Evaluator
eor Syntax
The expressions below show the various ways in which you can use the eor
evaluator. At least two parameters are required, but there is no limit to how many you can use.
eor(true,fieldA) // true iff fieldA is false
eor(fieldA,fieldB) // true iff either fieldA or fieldB is true but not both
eor(eq(fieldA,fieldB),eq(fieldC,fieldD)) // true iff either fieldA == fieldB or fieldC == fieldD but not both
eq
The eq
function will return whether all the parameters are equal, as per Java’s standard equals(…)
function. The function accepts parameters of any type, but will fail to execute if all the parameters are not of the same type. That is, all are Boolean, all are String, or all are Numeric. If any any parameters are null and there is at least one parameter that is not null then false will be returned. Returns a boolean value.
eq Parameters
Field Name | Raw Value | Evaluator
Field Name | Raw Value | Evaluator
……
Field Name | Raw Value | Evaluator
eq Syntax
The expressions below show the various ways in which you can use the eq
evaluator.
eq(1,2) // 1 == 2
eq(1,fieldA) // 1 == fieldA
eq(fieldA,val(foo)) fieldA == "foo"
eq(add(fieldA,fieldB),6) // fieldA + fieldB == 6
expMovingAge
The expMovingAverage
function computes an exponential moving average for a numeric array.
expMovingAge Parameters
numeric array
: The array to compute the exponential moving average from.integer
: window size
expMovingAvg Returns
A numeric array. The first element of the returned array will start from the windowSize-1 index of the original array.
expMovingAvg Syntax
expMovingAvg(numericArray, 5) //Computes an exponential moving average with a window size of 5.
factorial
The factorial
function returns the factorial of its parameter.
factorial Parameters
integer
: The value to compute the factorial for. The largest supported value of this parameter is 170.
factorial Returns
A double.
factorial Syntax
factorial(100) //Computes the factorial of 100
finddelay
The finddelay
function performs a cross-correlation between two numeric arrays and returns the delay.
finddelay Parameters
numeric array
numeric array
finddelay Syntax
finddelay(numericArray1, numericArray2)
floor
The floor
function rounds a decimal value to the next lowest whole number.
floor Parameters
Field Name | Raw Number | Number Evaluator
: The decimal to round down.
floor Syntax
The expressions below show the various ways in which you can use the floor
evaluator.
floor(100.4) // returns 100.
ceil(fieldA) // returns the next lowestt whole number for fieldA.
if(gt(fieldA,fieldB),floor(fieldA),floor(fieldB)) // if fieldA > fieldB then return the floor of fieldA, else return the floor of fieldB.
freqTable
The freqTable
function returns a frequency distribution from
an array of discrete values.
This function is designed to work with discrete values. To work with continuous data
use the hist
function.
freqTable Parameters
integer array
: The values to build the frequency distribution from.
freqTable Returns
A list of tuples containing the frequency information for each discrete value.
freqTable Syntax
freqTable(integerArray)
gammaDistribution
The gammaDistribution
function returns a gamma probability distribution based on its parameters. This function is part of the
probability distribution framework and is designed to work with the sample
, kolmogorovSmirnov
and cumulativeProbability
functions.
gammaDistribution Parameters
double
: shapedouble
: scale
gammaDistribution Returns
A probability distribution function,
gammaDistribution Syntax
gammaDistribution(1, 10)
geometricDistribution
The geometricDistribution
function returns a geometric probability distribution based on its parameters. This function is part of the
probability distribution framework and is designed to work with the sample, probability and cumulativeProbability functions.
geometricDistribution Parameters
double
: probability
geometricDistribution Syntax
geometricDistribution(.5) // Creates a geometric distribution with probability of .5
geometricDistribution Returns
A probability distribution function
getAttribute
The getAttribute
function returns an attribute from a matrix
by its key. Any function that returns a matrix
can
also set attributes on the matrix
with additional information. The setAttribute
function can also be used
to set attributes on a matrix
. The key to an attribute is always a string. The value of attribute can be any object
including numerics, arrays, maps, matrixes, etc.
getAttribute Parameters
matrix
: The matrix to set the attribute onstring
: The key for the attribute
getAttribute Syntax
getAttribute(matrix, key)
getAttribute Returns
object: any object
getAttributes
The getAttributes
function returns the attribute map from matrix. See the getAttribute
function for more details
on attributes.
getAttributes Parameters
matrix
: The matrix to retrieve the attribute map from.
getAttributes Syntax:
getAttributes(matrix)
getAttributes Returns
map: The map of attributes.
getColumnLabels
The getColumnLabels
function returns the columns labels of a matrix. The column labels can be optionally
set by any function that returns a matrix. The column labels can also be set via the setColumnLabels
function.
getColumnLabels Parameters
matrix
: The matrix to return the column labels of.
getColumnLabels Syntax
getColumnLabels(matrix)
getColumnLabels Returns
string array: The labels for each column in the matrix
getRowLabels
The getRowLabels
function returns the row labels of a matrix. The row labels can be optionally
set by any function that returns a matrix. The row labels can also be set via the setRowLabels
function.
getRowLabels Parameters
matrix
: The matrix to return the row labels from.
getRowLabels Syntax
getRowLabels(matrix)
getRowLabels Returns
string array: The labels for each row in the matrix
getValue
The getValue
function returns the value of a single Tuple entry by key.
getValue Parameters
tuple
: The Tuple to return the entry from.key
: The key of the entry to return the value for.
getValue Syntax
getValue(tuple, key)
getValue Returns
object: Returns an object of the same type as the Tuple entry.
grandSum
The grandSum
function sums all the values in a matrix.
grandSum Parameters
matrix
: The matrix to operate on.
grandSum Syntax
grandSum(matrix)
grandSum Returns
number: the sum of all the values in the matrix.
gt
The gt
function will return whether the first parameter is greater than the second parameter. The function accepts numeric or string parameters, but will fail to execute if all the parameters are not of the same type. That is, all are String or all are Numeric. If any any parameters are null then an error will be raised. Returns a boolean value.
gt Parameters
Field Name | Raw Value | Evaluator
Field Name | Raw Value | Evaluator
gt Syntax
The expressions below show the various ways in which you can use the gt
evaluator.
gt(1,2) // 1 > 2
gt(1,fieldA) // 1 > fieldA
gt(fieldA,val(foo)) // fieldA > "foo"
gt(add(fieldA,fieldB),6) // fieldA + fieldB > 6
gteq
The gteq
function will return whether the first parameter is greater than or equal to the second parameter. The function accepts numeric and string parameters, but will fail to execute if all the parameters are not of the same type. That is, all are String or all are Numeric. If any any parameters are null then an error will be raised. Returns a boolean value.
gteq Parameters
Field Name | Raw Value | Evaluator
Field Name | Raw Value | Evaluator
gteq Syntax
The expressions below show the various ways in which you can use the gteq
evaluator.
gteq(1,2) // 1 >= 2
gteq(1,fieldA) // 1 >= fieldA
gteq(fieldA,val(foo)) fieldA >= "foo"
gteq(add(fieldA,fieldB),6) // fieldA + fieldB >= 6
hist
The hist
function creates a histogram from a numeric array. The hist function is designed
to work with continuous variables.
hist Parameters
numeric array
bins
: The number of bins in the histogram. Each returned tuple contains summary statistics for the observations that were within the bin.
hist Syntax
hist(numericArray, bins)
hsin
The hsin
function returns the trigonometric hyperbolic sine of a number.
hsin Parameters
Field Name | Raw Number | Number Evaluator
: The value to return the hyperbolic sine of.
hsin Syntax
hsin(100.4) // returns the hsine of 100.4
hsin(fieldA) // returns the hsine for fieldA.
if(gt(fieldA,fieldB),sin(fieldA),sin(fieldB)) // if fieldA > fieldB then return the hsine of fieldA, else return the hsine of fieldB
if
The if
function works like a standard conditional if/then statement. If the first parameter is true, then the second parameter will be returned, else the third parameter will be returned. The function accepts a boolean as the first parameter and anything as the second and third parameters. An error will occur if the first parameter is not a boolean or is null.
if Parameters
Field Name | Raw Value | Boolean Evaluator
Field Name | Raw Value | Evaluator
Field Name | Raw Value | Evaluator
if Syntax
The expressions below show the various ways in which you can use the if
evaluator.
if(fieldA,fieldB,fieldC) // if fieldA is true then fieldB else fieldC
if(gt(fieldA,5), fieldA, 5) // if fieldA > 5 then fieldA else 5
if(eq(fieldB,null), null, div(fieldA,fieldB)) // if fieldB is null then null else fieldA / fieldB
indexOf
The indexOf
function returns the index of a string in an array of strings.
indexOf Parameters
string array
: The array to operate on.string
: The string to search for in the array.
indexOf Syntax
indexOf(stringArray, string)
indexOf Returns
integer: The index of the string in the array or -1 if the string is not found.
integrate
The integrate
function computes the integral of an interpolation function for a specific range of the curve.
integrate Parameters
spline
|akima
|lerp
|loess
: The interpolation function to compute the integral for.numeric
: start of integral rangenumeric
: end of integral range
integrate Syntax
integrate(function, start, end)
integrate Returns
numeric: The integral
length
The length
function returns the length of a numeric array.
length Parameters
numeric array
length Syntax
length(numericArray)
lerp (TOD0)
loess
The leoss
function is a smoothing curve fitter which uses a local regression algorithm.
Unlike the spline function which touches each control point, the loess
function puts a smooth curve through
the control points without having to touch the control points. The loess
result can be used by the derivative function to produce smooth derivatives from
data that is not smooth.
loess Positional Parameters
numeric array
: (Optional) x values. If omitted a sequence will be created for the x values.numeric array
: y values
loess Named Parameters
bandwidth
: (Optional) The percent of the data points to use when drawing the local regression line, defaults to .25. Decreasing the bandwidth increases the number of curves that loess can fit.robustIterations
: (Optional) The number of iterations used to smooth outliers, defaults to 2.
loess Syntax
loess(yValues) // This creates the xValues automatically and fits a smooth curve through the data points.
loess(xValues, yValues) // This will fit a smooth curve through the data points.
loess(xValues, yValues, bandwidth=.15) // This will fit a smooth curve through the data points using 15 percent of the data points for each local regression line.
loess Returns
function: The function can be treated as both a numeric array
of the smoothed data points and function
.
log
The log
function will return the natural log of the provided single parameter. The log
function will fail to execute if the value is non-numeric. If a null value is found, then null will be returned as the result.
log Parameters
Field Name | Raw Number | Number Evaluator
log Syntax
The expressions below show the various ways in which you can use the log
evaluator. Only one parameter is accepted. Returns a numeric value.
log(100)
log(add(fieldA,fieldB))
log(fieldA)
logNormalDistribution
The logNormalDistribution
function returns a log normal probability distribution based on its parameters. This function is part of the probability distribution framework and is designed to
work with the sample
, kolmogorovSmirnov
and cumulativeProbability
functions.
logNormalDistribution Parameters
double
: shapedouble
: scale
logNormalDistribution Returns
A probability distribution function.
logNormalDistribution Syntax
logNormalDistribution(.3, .0)
kolmogorovSmirnov
The kolmogorovSmirnov
function performs a Kolmogorov Smirnov test,
between a reference continuous probability distribution and a sample set.
The supported distribution functions are: empiricalDistribution
, normalDistribution
, logNormalDistribution
, weibullDistribution
, gammaDistribution
, and betaDistribution
.
kolmogorovSmirnov Parameters
continuous probability distribution
: Reference distributionnumeric array
: sample set
kolmogorovSmirnov Returns
A result tuple: A tuple containing the p-value and d-statistic for the test result.
kolmogorovSmirnov Syntax
kolmogorovSmirnov(normalDistribution(10, 2), sampleSet)
lt
The lt
function will return whether the first parameter is less than the second parameter. The function accepts numeric or string parameters, but will fail to execute if all the parameters are not of the same type. That is, all are String or all are Numeric. If any any parameters are null then an error will be raised. Returns a boolean value.
lt Parameters
Field Name | Raw Value | Evaluator
Field Name | Raw Value | Evaluator
lt Syntax
The expressions below show the various ways in which you can use the lt
evaluator.
lt(1,2) // 1 < 2
lt(1,fieldA) // 1 < fieldA
lt(fieldA,val(foo)) fieldA < "foo"
lt(add(fieldA,fieldB),6) // fieldA + fieldB < 6
lteq
The lteq
function will return whether the first parameter is less than or equal to the second parameter. The function accepts numeric and string parameters, but will fail to execute if all the parameters are not of the same type. That is, all are String or all are Numeric. If any any parameters are null then an error will be raised. Returns a boolean value.
lteq Parameters
Field Name | Raw Value | Evaluator
Field Name | Raw Value | Evaluator
lteq Syntax
The expressions below show the various ways in which you can use the lteq
evaluator.
lteq(1,2) // 1 <= 2
lteq(1,fieldA) // 1 <= fieldA
lteq(fieldA,val(foo)) fieldA <= "foo"
lteq(add(fieldA,fieldB),6) // fieldA + fieldB <= 6
markovChain
The markovChain
function can be used to perform Markov Chain simulations.
The markovChain
function takes as its parameter a transition matrix and
returns a mathematical model that can be sampled using the sample function. Each sample taken
from the Markov Chain represents the current state of system.
markovChain Parameters
matrix
: Transition matrix
markovChain Syntax
sample(markovChain(transitionMatrix), 5) // This creates a Markov Chain given a specific transition matrix. The sample function takes 5 samples from the Markov Chain, representing the next five states of the system.
markovChain Returns
Markov Chain model: The Markoff Chain model can be used with sample function.
matrix
The matrix function returns a matrix which can be operated on by functions that support matrix operations.
matrix Parameters
numeric array
…: One or more numeric arrays that will be the rows of the matrix.
matrix Syntax
matrix(numericArray1, numericArray2, numericArray3) // Returns a matrix with three rows of data: numericaArray1, numericArray2, numericArray3
matrix Returns
matrix
meanDifference
The meanDifference
function calculates the mean of the differences following the element-by-element subtraction between two numeric arrays.
meanDifference Parameters
numeric array
numeric array
meanDifference Returns
A numeric.
meanDifference Syntax
meanDifference(numericArray, numericArray)
minMaxScale
The minMaxScale
function scales numeric arrays within a minimum and maximum value.
By default minMaxScale
scales between 0 and 1. The minMaxScale
function can operate on
both numeric arrays and matrices.
When operating on a matrix the minMaxScale
function operates on each row of the matrix.
minMaxScale Parameters
numeric array
|matrix
: The array or matrix to scaledouble
: (Optional) The min value. Defaults to 0.double
: (Optional) The max value. Defaults to 1.
minMaxScale Syntax
minMaxScale(numericArray) // scale a numeric array between 0 and 1
minMaxScale(numericArray, 0, 100) // scale a numeric array between 1 and 100
minMaxScale(matrix) // Scale each row in a matrix between 0 and 1
minMaxScale(matrix, 0, 100) // Scale each row in a matrix between 0 and 100
minMaxScale Returns
A numeric array or matrix
mod
The mod
function returns the remainder (modulo) of the first parameter divided by the second parameter.
mod Parameters
Field Name | Raw Number | Number Evaluator
: Parameter 1Field Name | Raw Number | Number Evaluator
: Parameter 2
mod Syntax
The expressions below show the various ways in which you can use the mod
evaluator.
mod(100,3) // returns the remainder of 100 / 3 .
mod(100,fieldA) // returns the remainder of 100 divided by the value of fieldA.
mod(fieldA,1.4) // returns the remainder of fieldA divided by 1.4.
if(gt(fieldA,fieldB),mod(fieldA,fieldB),mod(fieldB,fieldA)) // if fieldA > fieldB then return the remainder of fieldA/fieldB, else return the remainder of fieldB/fieldA.
monteCarlo
The monteCarlo
function performs a Monte Carlo simulation
based on its parameters. The monteCarlo
function runs another function a specified number of times and returns the results.
The function being run typically has one or more variables that are drawn from probability
distributions on each run. The sample
function is used in the function to draw the samples.
The simulation’s result array can then be treated as an empirical distribution to understand the probabilities of the simulation results.
monteCarlo Parameters
numeric function
: The function being run by the simulation, which must return a numeric value.integer
: The number of times to run the function.
monteCarlo Returns
A numeric array: The results of simulation runs.
monteCarlo Syntax
let(a=uniformIntegerDistribution(1, 6),
b=uniformIntegerDistribution(1, 6),
c=monteCarlo(add(sample(a), sample(b)), 1000))
In the expression above the monteCarlo
function is running the function add(sample(a), sample(b))
1000 times and returning the result. Each time the function is run samples are drawn from the
probability distributions stored in variables a
and b
.
movingAvg
The movingAvg
function calculates a moving average over an array of numbers.
movingAvg Parameters
numeric array
window size
movingAvg Returns
A numeric array. The first element of the returned array will start from the windowSize-1 index of the original array.
movingAvg Syntax
movingAverage(numericArray, 30)
movingMedian
The movingMedian
function calculates a moving median over an array of numbers.
movingMedian Parameters
numeric array
window size
movingMedian Returns
A numeric array. The first element of the returned array will start from the windowSize-1 index of the original array.
movingMedian Syntax
movingMedian(numericArray, 30)
mult
The mult
function will take two or more numeric values and multiply them together. The mult
function will fail to execute if any of the values are non-numeric. If a null value is found then null will be returned as the result.
mult Parameters
Field Name | Raw Number | Number Evaluator
Field Name | Raw Number | Number Evaluator
……
Field Name | Raw Number | Number Evaluator
mult Syntax
The expressions below show the various ways in which you can use the mult
evaluator. The number and order of these parameters do not matter and is not limited except that at least two parameters are required. Returns a numeric value.
mult(1,2,3,4) // 1 * 2 * 3 * 4
mult(1,fieldA) // 1 * value of fieldA
mult(fieldA,1.4) // value of fieldA * 1.4
mult(fieldA,fieldB,fieldC) // value of fieldA * value of fieldB * value of fieldC
mult(fieldA,div(fieldA,fieldB)) // value of fieldA * (value of fieldA / value of fieldB)
mult(fieldA,if(gt(fieldA,fieldB),fieldA,fieldB)) // if fieldA > fieldB then fieldA * fieldA, else fieldA * fieldB
normalDistribution
The normalDistribution
function returns a normal probability distribution
based on its parameters. This function is part of the probability distribution framework and is designed to
work with the sample
, kolmogorovSmirnov
and cumulativeProbability
functions.
normalDistribution Parameters
double
: meandouble
: standard deviation
normalDistribution Returns
A probability distribution function.
normalDistribution Syntax
normalDistribution(mean, stddev)
normalizeSum
The normalizeSum
function scales numeric arrays so that they sum to 1.
The normalizeSum
function can operate on both numeric arrays and matrices.
When operating on a matrix the normalizeSum
function operates on each row of the matrix.
normalizeSum Parameters
numeric array
|matrix
normalizeSum Syntax
normalizeSum(numericArray)
normalizeSum(matrix)
normalizeSum Returns
numeric array | matrix
not
The not
function will return the logical NOT of a single boolean parameter. The function will fail to execute if the parameter is non-boolean or null. Returns a boolean value.
not Parameters
Field Name | Raw Boolean | Boolean Evaluator
not Syntax
The expressions below show the various ways in which you can use the not
evaluator. Only one parameter is allowed.
not(true) // false
not(fieldA) // true if fieldA is false else false
not(eq(fieldA,fieldB)) // true if fieldA != fieldB
olsRegress
The olsRegress
function performs ordinary least squares, multivariate, linear regression.
The olsRegress
function returns a single Tuple containing the regression model with estimated regression parameters, RSquared and regression diagnostics.
The output of olsRegress
can be used with the predict function to predict values based on the regression model.
olsRegress Parameters
matrix
: The regressor observation matrix. Each row in the matrix represents a single multi-variate regressor observation. Note that there is no need to add an initial unitary column (column of 1’s) when specifying a model including an intercept term, this column will be added automatically.numeric array
: The outcomes array which matches up with each row in the regressor observation matrix.
olsRegress Syntax
olsRegress(matrix, numericArray) // This performs the olsRegression analysis on given regressor matrix and outcome array.
olsRegress Returns
Tuple: The regression model including the estimated regression parameters and diagnostics.
or
The or
function will return the logical OR of at least 2 boolean parameters. The function will fail to execute if any parameters are non-boolean or null. Returns a boolean value.
or Parameters
Field Name | Raw Boolean | Boolean Evaluator
Field Name | Raw Boolean | Boolean Evaluator
……
Field Name | Raw Boolean | Boolean Evaluator
or Syntax
The expressions below show the various ways in which you can use the or
evaluator. At least two parameters are required, but there is no limit to how many you can use.
or(true,fieldA) // true || fieldA
or(fieldA,fieldB) // fieldA || fieldB
or(and(fieldA,fieldB),fieldC) // (fieldA && fieldB) || fieldC
or(fieldA,fieldB,fieldC,and(fieldD,fieldE),fieldF)
poissonDistribution
The poissonDistribution
function returns a poisson probability distribution
based on its parameter. This function is part of the probability distribution framework and is designed to
work with the sample
, probability
and cumulativeProbability
functions.
poissonDistribution Parameters
double
: mean
poissonDistribution Returns
A probability distribution function.
poissonDistribution Syntax
poissonDistribution(mean)
polyFit
The polyFit
function performs polynomial curve fitting.
polyFit Parameters
numeric array
: (Optional) x values. If omitted a sequence will be created for the x values.numeric array
: y valuesinteger
: (Optional) polynomial degree. Defaults to 3.
polyFit Returns
A numeric array: curve that was fit to the data points.
polyFit Syntax
polyFit(yValues) // This creates the xValues automatically and fits a curve through the data points using the default 3 degree polynomial.
polyFit(yValues, 5) // This creates the xValues automatically and fits a curve through the data points using a 5 degree polynomial.
polyFit(xValues, yValues, 5) // This will fit a curve through the data points using a 5 degree polynomial.
pow
The pow
function returns the value of its first parameter raised to the power of its second parameter.
pow Parameters
Field Name
|Raw Number
|Number Evaluator
: Parameter 1Field Name
|Raw Number
|Number Evaluator
: Parameter 2
pow Syntax
The expressions below show the various ways in which you can use the pow
evaluator.
pow(2,3) // returns 2 raised to the 3rd power.
pow(4,fieldA) // returns 4 raised by the value of fieldA.
pow(fieldA,1.4) // returns the value of fieldA raised by 1.4.
if(gt(fieldA,fieldB),pow(fieldA,fieldB),pow(fieldB,fieldA)) // if fieldA > fieldB then raise fieldA by fieldB, else raise fieldB by fieldA.
predict
The predict
function predicts the value of dependent variables based on regression models or functions.
The predict
function can predict values based on the output of the following functions: spline, loess, regress, olsRegress.
predict Parameters
regression model
|function
: The model or function used for the predictionnumber
|numeric array
|matrix
: Depending on the regression model or function used, the predictor variable can be a number, numeric array or matrix.
predict Syntax
predict(regressModel, number) // predict using the output of the <<regress>> function and single numeric predictor. This will return a single numeric prediction.
predict(regressModel, numericArray) // predict using the output of the <<regress>> function and a numeric array of predictors. This will return a numeric array of predictions.
predict(splineFunc, number) // predict using the output of the <<spline>> function and single numeric predictor. This will return a single numeric prediction.
predict(splineFunc, numericArray) // predict using the output of the <<spline>> function and a numeric array of predictors. This will return a numeric array of predictions.
predict(olsRegressModel, numericArray) // predict using the output of the <<olsRegress>> function and a numeric array containing one multi-variate predictor. This will return a single numeric prediction.
predict(olsRegressModel, matrix) // predict using the output of the <<olsRegress>> function and a matrix containing rows of multi-variate predictor arrays. This will return a numeric array of predictions.
primes
The primes
function returns an array of prime numbers starting from a specified number.
primes Parameters
integer
: The number of primes to return in the listinteger
: The starting point for returning the primes
primes Returns
A numeric array.
primes Syntax
primes(100, 2000) // returns 100 primes starting from 2000
probability
The probability
function returns the probability of a random variable within a probability distribution.
The probability
function computes the probability between random variable ranges for both continuous and
discrete probability distributions.
The probability
function can compute probabilities for a specific random variable for
discrete probability distributions only.
The supported continuous distribution functions are: normalDistribution, logNormalDistribution, betaDistribution, gammaDistribution, empiricalDistribution, triangularDistribution, weibullDistribution, uniformDistribution, constantDistribution
The supported discreet distributions are: poissonDistribution, binomialDistribution, enumeratedDistribution, zipFDistribution, geometricDistribution, uniformIntegerDistribution
probability Parameters
probability distribution
: the probability distribution to compute the probability from.number
: low value of the range.number
: (Optional for discrete probability distributions) high value of the range. If the high range is omitted then the probability function will compute a probability for the low range value.
probability Syntax
probability(poissonDistribution(10), 7) // Returns the probability of a random sample of 7 in a poisson distribution with a mean of 10.
probability(normalDistribution(10, 2), 7.5, 8.5) // Returns the probability between the range of 7.5 to 8.5 for a normal distribution with a mean of 10 and standard deviation of 2.
probability Returns
double: probability
rank
The rank
performs a rank transformation on a numeric array.
rank Parameters
numeric array
rank Syntax
rank(numericArray)
raw
The raw
function will return whatever raw value is the parameter. This is useful for cases where you want to use a string as part of another evaluator.
raw Parameters
Raw Value
raw Syntax
The expressions below show the various ways in which you can use the raw
evaluator. Whatever is inside will be returned as-is. Internal evaluators are considered strings and are not evaluated.
raw(foo) // "foo"
raw(count(*)) // "count(*)"
raw(45) // 45
raw(true) // "true" (note: this returns the string "true" and not the boolean true)
eq(raw(fieldA), fieldA) // true if the value of fieldA equals the string "fieldA"
regress
The regress
function performs a simple regression of two numeric arrays.
The result of this expression is also used by the predict
function.
regress Parameters
numeric array
numeric array
regress Syntax
regress(numericArray1, numericArray2)
rev
The rev
function reverses the order of a numeric array.
rev Parameters
numeric array
rev Syntax
rev(numericArray)
round
The round
function returns the closest whole number to the argument.
round Parameters
Field Name
|Raw Number
|Number Evaluator
: The value to return the square root of.
round Syntax
round(100.4)
round(fieldA)
if(gt(fieldA,fieldB),sqrt(fieldA),sqrt(fieldB)) // if fieldA > fieldB then return the round of fieldA, else return the round of fieldB
rowAt
The rowAt
function returns the row of a matrix at a specific index as a numeric array.
rowAt Parameters
matrix
: the matrix to operate oninteger
: the index of the row to return
rowAt Syntax
rowAt(matrix, 10)
rowAt Returns
numeric array: the row of the matrix
rowCount
The rowCount
function returns the number of rows in a matrix
.
rowCount Parameters
matrix
: the matrix to operate on
rowCount Syntax
rowCount(matrix)
rowCount Returns
integer: number rows in the matrix.
sample
The sample
function can be used to draw random samples from a probability distribution or Markov Chain.
sample Parameters
probability distribution
|Markov Chain
: The distribution or Markov Chain to sample.integer
: (Optional) Sample size. Defaults to 1.
sample Returns
Either a single numeric random sample, or a numeric array depending on the sample size parameter.
sample Syntax
sample(poissonDistribution(5)) // Returns a single random sample from a poissonDistribution with mean of 5.
sample(poissonDistribution(5), 1000) // Returns 1000 random samples from poissonDistribution with a mean of 5.
sample(markovChain(transitionMatrix), 1000) // Returns 1000 random samples from a Markov Chain.
scalarAdd
The scalarAdd
function adds a scalar value to every value in a numeric array or matrix.
When working with numeric arrays, scalarAdd
returns a new array with the new values. When working
with a matrix, scalarAdd
returns a new matrix with new values.
scalarAdd Parameters
number
: value to add
numeric array
| matrix
: the numeric array or matrix to add the value to.
scalarAdd Syntax
scalarAdd(number, numericArray) // Adds the number to each element in the number in the array.
scalarAdd(number, matrix) // Adds the number to each value in a matrix
scalarAdd Returns
numericArray | matrix: Depending on what is being operated on.
scalarDivide
The scalarDivide
function divides each number in numeric array or matrix by a scalar value.
When working with numeric arrays, scalarDivide
returns a new array with the new values. When working
with a matrix, scalarDivide
returns a new matrix with new values.
scalarDivide Parameters
number
: value to divide by
numeric array
| matrix
: the numeric array or matrix to divide by the value to.
scalarDivide Syntax
scalarDivide(number, numericArray) // Divides each element in the numeric array by the number.
scalarDivide(number, matrix) // Divides each element in the matrix by the number.
scalarDivide Returns
numericArray | matrix: depending on what is being operated on.
scalarMultiply
The scalarMultiply
function multiplies each element in a numeric array or matrix by a
scalar value. When working with numeric arrays, scalarMultiply
returns a new array with the new values. When working
with a matrix, scalarMultiply
returns a new matrix with new values.
scalarMultiply Parameters
number
: value to divide by
numeric array
| matrix
: the numeric array or matrix to divide by the value to.
scalarMultiply Syntax
scalarMultiply(number, numericArray) // Multiplies each element in the numeric array by the number.
scalarMultiply(number, matrix) // Multiplies each element in the matrix by the number.
scalarMultiply Returns
numericArray | matrix: depending on what is being operated on
scalarSubtract
The scalarSubtract
function subtracts a scalar value from every value in a numeric array or matrix.
When working with numeric arrays, scalarSubtract
returns a new array with the new values. When working
with a matrix, scalarSubtract
returns a new matrix with new values.
scalarSubtract Parameters
number
: value to add
numeric array
| matrix
: the numeric array or matrix to subtract the value from.
scalarSubtract Syntax
scalarSubtract(number, numericArray) // Subtracts the number from each element in the number in the array.
scalarSubtract(number, matrix) // Subtracts the number from each value in a matrix
scalarSubtract Returns
numericArray | matrix: depending on what is being operated on.
scale
The scale
function multiplies all the elements of an array by a number.
scale Parameters
number
numeric array
scale Syntax
scale(number, numericArray)
sequence
The sequence
function returns an array of numbers based on its parameters.
sequence Parameters
length
start
stride
sequence Syntax
sequence(100, 0, 1) // Returns a sequence of length 100, starting from 0 with a stride of 1.
setAttributes
The setAttributes
function sets an attributes map of a matrix
.
setAttributes Parameters
matrix
: The matrix to set the attributes map to.map
: The map of attributes to set on the matrix.
setAttributes Syntax
setAttributes(matrix, map)
setAttributes Returns
matrix: The matrix with the attributes set.
setColumnLabels
The setColumnLabels
function sets the columns labels of a matrix.
setColumnLabels Parameters
matrix
: The matrix to set the column labels to.string array
: The column labels to set the matrix
setColumnLabels Syntax
setColumnLabels(matrix, labels)
setColumnLabels Returns
matrix: The matrix with the labels set.
setRowLabels
The setRowLabels
function sets the row labels of a matrix.
setRowLabels Parameters
matrix
: The matrix to set the row labels to.string array
: The row labels to set to the matrix
setRowLabels Syntax
setRowLabels(matrix, labels)
setRowLabels Returns
matrix: The matrix with the labels set.
setValue
The setValue
function sets a new value for a Tuple entry.
setValue Parameters
tuple
: The Tuple to return the entry from.key
: The key of the entry to set.value
: The value to set.
setValue Syntax
setValue(tuple, key, value)
setValue Returns
tuple: Returns the new modified tuple
sin
The sin
function returns the trigonometric sine of a number.
sin Parameters
Field Name | Raw Number | Number Evaluator
: The value to return the sine of.
sin Syntax
sin(100.4) // returns the sine of 100.4
sine(fieldA) // returns the sine for fieldA.
if(gt(fieldA,fieldB),sin(fieldA),sin(fieldB)) // if fieldA > fieldB then return the sine of fieldA, else return the sine of fieldB
spline
The spline
function performs a cubic spline interpolation (https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation) of a curve
given a set of x,y coordinates. The return value of the spline function is an
interpolation function which can be used to predict values along the curve and generate a derivative of
the curve.
spline Parameters
numeric array
: (Optional) x values. If omitted a sequence will be created for the x values.numeric array
: y values
spline Syntax
spline(yValues) // This creates the xValues automatically and fits a spline through the data points.
spline(xValues, yValues) // This will fit a spline through the data points.
spline Returns
function: the function can be treated as both a numeric array
and function
.
sqrt
The sqrt
function returns the trigonometric square root of a number.
sqrt Parameters
Field Name | Raw Number | Number Evaluator
: The value to return the square root of.
sqrt Syntax
sqrt(100.4) // returns the square root of 100.4
sqrt(fieldA) // returns the square root for fieldA.
if(gt(fieldA,fieldB),sqrt(fieldA),sqrt(fieldB)) // if fieldA > fieldB then return the sqrt of fieldA, else return the sqrt of fieldB
standardize
The standardize
function standardizes a numeric array so that values within the array
have a mean of 0 and standard deviation of 1.
standardize Parameters
numeric array
: the array to standardize
standardize Syntax
standardize(numericArray)
standardize Returns
numeric array: the standardized values
sub
The sub
function will take 2 or more numeric values and subtract them, from left to right. The sub
function will fail to execute if any of the values are non-numeric. If a null value is found then null
will be returned as the result.
sub Parameters
Field Name | Raw Number | Number Evaluator
Field Name | Raw Number | Number Evaluator
……
Field Name | Raw Number | Number Evaluator
sub Syntax
The expressions below show the various ways in which you can use the sub
evaluator. The number of these parameters does not matter and is not limited except that at least two parameters are required. Returns a numeric value.
sub(1,2,3,4) // 1 - 2 - 3 - 4
sub(1,fieldA) // 1 - value of fieldA
sub(fieldA,1.4) // value of fieldA - 1.4
sub(fieldA,fieldB,fieldC) // value of fieldA - value of fieldB - value of fieldC
sub(fieldA,div(fieldA,fieldB)) // value of fieldA - (value of fieldA / value of fieldB)
if(gt(fieldA,fieldB),sub(fieldA,fieldB),sub(fieldB,fieldA)) // if fieldA > fieldB then fieldA - fieldB, else fieldB - field
sumDifference
The sumDifference
function calculates the sum of the differences following an element-by-element subtraction between two numeric arrays.
sumDifference Parameters
numeric array
numeric array
sumDifference Returns
A numeric.
sumDifference Syntax
sumDifference(numericArray, numericArray)
sumColumns
The sumColumns
function sums the columns in a matrix and returns a numeric array with the result.
sumColumns Parameters
matrix
: the matrix to operate on
sumColumns Syntax
sumColumns(matrix)
sumColumns Returns
numeric array: the sum of the columns
sumRows
The sumRows
function sums the rows in a matrix and returns a numeric array with the result.
sumRows Parameters
matrix
: the matrix to operate on
sumRows Syntax
sumRows(matrix)
sumRows Returns
numeric array: sum of the rows.
sumSq
The sumSq
function returns the sum-of-squares of the values in a numeric array.
sumSq Parameters
numeric array
: The numeric array to compute the sumSq of.
sumSq Syntax
sumSq(numericArray)
sumSq Returns
numeric: result of the sumSq calculation
transpose
The transpose
function transposes a matrix .
transpose Parameters
matrix
: the matrix to transpose
transpose Syntax
transpose(matrix)
transpose Returns
matrix: the transposed matrix
triangularDistribution
The triangularDistribution
function returns a triangular probability distribution
based on its parameters. This function is part of the
probability distribution framework and is designed to work with the sample
, probability
and cumulativeProbability
functions.
triangularDistribution Parameters
double
: low valuedouble
: most likely valuedouble
: high value
triangularDistribution Syntax
triangularDistribution(10, 15, 20) // A triangular distribution with a low value of 10, most likely value of 15 and high value of 20.
triangularDistribution Returns
Probability distribution function
uniformDistribution
The uniformDistribution
function returns a continuous uniform probability distribution
based on its parameters. See the uniformIntegerDistribution
to work with discrete uniform distributions. This function is part of the
probability distribution framework and is designed to work with the sample
and cumulativeProbability
functions.
uniforDistribution Parameters
double
: startdouble
: end
uniformDistribution Returns
Probability distribution function.
uniformDistribution Syntax
uniformDistribution(0.0, 100.0)
uniformIntegerDistribution
The uniformIntegerDistribution
function returns a discrete uniform probability distribution
based on its parameters. See the uniformDistribution
to work with continuous uniform distributions. This function is part of the
probability distribution framework and is designed to work with the sample
, probability
and cumulativeProbability
functions.
uniformIntegerDistribution Parameters
integer
: startinteger
: end
uniformIntegerDistribution Returns
A probability distribution function.
uniformIntegerDistribution Syntax
uniformDistribution(1, 6)
unitize
The unitize
function scales numeric arrays to a magnitude of 1, often called unit vectors.
The unitize function can operate on both numeric arrays and matrices.
When operating on a matrix the unitize function unitizes each row of the matrix.
unitize Parameters
numeric array
|matrix
: The array or matrix to unitize
unitize Syntax
unitize(numericArray) // Unitize a numeric array
unitize(matrix) // Unitize each row in a matrix
unitize Returns
numeric array | matrix
weibullDistribution
The weibullDistribution
function returns a Weibull probability distribution
based on its parameters. This function is part of the
probability distribution framework and is designed to work with the sample
, kolmogorovSmirnov
and cumulativeProbability
functions.
weibullDistribution Parameters
double
: shapedouble
: scale
weibullDistribution Returns
A probability distribution function.
weibullDistribution Syntax
weibullDistribution(.5, 10)
zipFDistribution
The zipFDistribution
function returns a ZipF distribution
based on its parameters. This function is part of the
probability distribution framework and is designed to work with the sample
,
probability
and cumulativeProbability
functions.
zipFDistribution Parameters
integer
: sizedouble
: exponent
zipFDistribution Returns
A probability distribution function.
zipFDistribution Syntax
zipFDistribution(5000, 1.0)