Solr supports location data for use in spatial/geospatial searches.
Using spatial search, you can:
-
Index points or other shapes
-
Filter search results by a bounding box or circle or by other shapes
-
Sort or boost scoring by distance between points, or relative area between rectangles
-
Generate a 2D grid of facet count numbers for heatmap generation or point-plotting.
There are four main field types available for spatial search:
-
LatLonPointSpatialField
-
LatLonType
(now deprecated) and its non-geodetic twinPointType
-
SpatialRecursivePrefixTreeFieldType
(RPT for short), includingRptWithGeometrySpatialField
, a derivative -
BBoxField
LatLonPointSpatialField
is the ideal field type for the most common use-cases for lat-lon point data. It replaces LatLonType which still exists for backwards compatibility. RPT offers some more features for more advanced/custom use cases and options like polygons and heatmaps.
RptWithGeometrySpatialField
is for indexing and searching non-point data though it can do points too. It can’t do sorting/boosting.
BBoxField
is for indexing bounding boxes, querying by a box, specifying a search predicate (Intersects,Within,Contains,Disjoint,Equals), and a relevancy sort/boost like overlapRatio or simply the area.
Some esoteric details that are not in this guide can be found at http://wiki.apache.org/solr/SpatialSearch.
LatLonPointSpatialField
Here’s how LatLonPointSpatialField
(LLPSF) should usually be configured in the schema:
<fieldType name="location" class="solr.LatLonPointSpatialField" docValues="true"/>
LLPSF supports toggling indexed
, stored
, docValues
, and multiValued
. LLPSF internally uses a 2-dimensional Lucene "Points" (BDK tree) index when "indexed" is enabled (the default). When "docValues" is enabled, a latitude and longitudes pair are bit-interleaved into 64 bits and put into Lucene DocValues. The accuracy of the docValues data is about a centimeter.
Indexing Points
For indexing geodetic points (latitude and longitude), supply it in "lat,lon" order (comma separated).
For indexing non-geodetic points, it depends. Use x y
(a space) if RPT. For PointType however, use x,y
(a comma).
If you’d rather use a standard industry format, Solr supports WKT and GeoJSON. However it’s much bulkier than the raw coordinates for such simple data. (Not supported by the deprecated LatLonType or PointType)
Searching with Query Parsers
There are two spatial Solr "query parsers" for geospatial search: geofilt
and bbox
. They take the following parameters:
Parameter | Description | ||
---|---|---|---|
d |
the radial distance, usually in kilometers. (RPT & BBoxField can set other units via the setting |
||
pt |
the center point using the format "lat,lon" if latitude & longitude. Otherwise, "x,y" for PointType or "x y" for RPT field types. |
||
sfield |
a spatial indexed field |
||
score |
(Advanced option; not supported by LatLonType (deprecated) or PointType) If the query is used in a scoring context (e.g. as the main query in
When used with
|
||
filter |
(Advanced option; not supported by LatLonType (deprecated) or PointType). If you only want the query to score (with the above |
geofilt
The geofilt
filter allows you to retrieve results based on the geospatial distance (AKA the "great circle distance") from a given point. Another way of looking at it is that it creates a circular shape filter. For example, to find all documents within five kilometers of a given lat/lon point, you could enter &q=:&fq={!geofilt sfield=store}&pt=45.15,-93.85&d=5
. This filter returns all results within a circle of the given radius around the initial point:
bbox
The bbox
filter is very similar to geofilt
except it uses the bounding box of the calculated circle. See the blue box in the diagram below. It takes the same parameters as geofilt.
Here’s a sample query:
&q=:&fq={!bbox sfield=store}&pt=45.15,-93.85&d=5
The rectangular shape is faster to compute and so it’s sometimes used as an alternative to geofilt
when it’s acceptable to return points outside of the radius. However, if the ideal goal is a circle but you want it to run faster, then instead consider using the RPT field and try a large distErrPct
value like 0.1
(10% radius). This will return results outside the radius but it will do so somewhat uniformly around the shape.
When a bounding box includes a pole, the bounding box ends up being a "bounding bowl" (a spherical cap) that includes all values north of the lowest latitude of the circle if it touches the north pole (or south of the highest latitude if it touches the south pole). |
Filtering by an Arbitrary Rectangle
Sometimes the spatial search requirement calls for finding everything in a rectangular area, such as the area covered by a map the user is looking at. For this case, geofilt and bbox won’t cut it. This is somewhat of a trick, but you can use Solr’s range query syntax for this by supplying the lower-left corner as the start of the range and the upper-right corner as the end of the range.
Here’s an example:
&q=:&fq=store:[45,-94 TO 46,-93]
LatLonType (deprecated) does not support rectangles that cross the dateline. For RPT and BBoxField, if you are non-geospatial coordinates (geo="false"
) then you must quote the points due to the space, e.g. "x y"
.
Optimizing: Cache or Not
It’s most common to put a spatial query into an "fq" parameter – a filter query. By default, Solr will cache the query in the filter cache.
If you know the filter query (be it spatial or not) is fairly unique and not likely to get a cache hit then specify cache="false"
as a local-param as seen in the following example. The only spatial types which stand to benefit from this technique are LatLonPointSpatialField and LatLonType (deprecated). Enable docValues on the field (if it isn’t already). LatLonType (deprecated) additionally requires a cost="100"
(or more) local-param.
&q=…mykeywords…&fq=…someotherfilters…&fq={!geofilt cache=false}&sfield=store&pt=45.15,-93.85&d=5
LLPSF does not support Solr’s "PostFilter".
Distance Sorting or Boosting (Function Queries)
There are four distance function queries:
For more information about these function queries, see the section on Function Queries.
geodist
geodist
is a distance function that takes three optional parameters: (sfield,latitude,longitude)
. You can use the geodist
function to sort results by distance or score return results.
For example, to sort your results by ascending distance, enter …&q=:&fq={!geofilt}&sfield=store&pt=45.15,-93.85&d=50&sort=geodist() asc
.
To return the distance as the document score, enter …&q={!func}geodist()&sfield=store&pt=45.15,-93.85&sort=score+asc
.
More Examples
Here are a few more useful examples of what you can do with spatial search in Solr.
Use as a Sub-Query to Expand Search Results
Here we will query for results in Jacksonville, Florida, or within 50 kilometers of 45.15,-93.85 (near Buffalo, Minnesota):
&q=:&fq=(state:"FL" AND city:"Jacksonville") OR {!geofilt}&sfield=store&pt=45.15,-93.85&d=50&sort=geodist()+asc
Facet by Distance
To facet by distance, you can use the Frange query parser:
&q=:&sfield=store&pt=45.15,-93.85&facet.query={!frange l=0 u=5}geodist()&facet.query={!frange l=5.001 u=3000}geodist()
There are other ways to do it too, like using a \{!geofilt} in each facet.query.
Boost Nearest Results
Using the DisMax or Extended DisMax, you can combine spatial search with the boost function to boost the nearest results:
&q.alt=:&fq={!geofilt}&sfield=store&pt=45.15,-93.85&d=50&bf=recip(geodist(),2,200,20)&sort=score desc
RPT
RPT refers to either SpatialRecursivePrefixTreeFieldType
(aka simply RPT) and an extended version: RptWithGeometrySpatialField
(aka RPT with Geometry). RPT offers several functional improvements over LatLonPointSpatialField:
-
Non-geodetic – geo=false general x & y (not latitude and longitude)
-
Query by polygons and other complex shapes, in addition to circles & rectangles
-
Ability to index non-point shapes (e.g. polygons) as well as points – see RptWithGeometrySpatialField
-
Heatmap grid faceting
RPT shares various features in common with LatLonPointSpatialField
. Some are listed here:
-
Latitude/Longitude indexed point data; possibly multi-valued
-
Fast filtering with
geofilt
,bbox
filters, and range query syntax (dateline crossing is supported) -
Sort/boost via
geodist
-
Well-Known-Text (WKT) shape syntax (required for specifying polygons & other complex shapes), and GeoJSON too. In addition to indexing and searching, this works with the
wt=geojson
(GeoJSON Solr response-writer) and[geo f=myfield]
(geo Solr document-transformer).
Schema Configuration
To use RPT, the field type must be registered and configured in schema.xml
. There are many options for this field type.
Setting | Description |
---|---|
name |
The name of the field type. |
class |
This should be |
spatialContextFactory |
This is a Java class name to an internal extension point governing support for shape definitions & parsing. If you require polygon support, set this to |
geo |
If true, the default, latitude and longitude coordinates will be used and the mathematical model will generally be a sphere. If false, the coordinates will be generic X & Y on a 2D plane using Euclidean/Cartesian geometry. |
format |
Defines the shape syntax/format to be used. Defaults to |
distanceUnits |
This is used to specify the units for distance measurements used throughout the use of this field. This can be
|
distErrPct |
Defines the default precision of non-point shapes (both index & query), as a fraction between 0.0 (fully precise) to 0.5. The closer this number is to zero, the more accurate the shape will be. However, more precise indexed shapes use more disk space and take longer to index. Bigger distErrPct values will make queries faster but less accurate. At query time this can be overridden in the query syntax, such as to 0.0 so as to not approximate the search shape. The default for the RPT field is 0.025. Note: For RPTWithGeometrySpatialField (see below), there’s always complete accuracy with the serialized geometry and so this doesn’t control accuracy so much as it controls the trade-off of how big the index should be. distErrPct defaults to 0.15 for that field. |
maxDistErr |
Defines the highest level of detail required for indexed data. If left blank, the default is one meter – just a bit less than 0.000009 degrees. This setting is used internally to compute an appropriate maxLevels (see below). |
worldBounds |
Defines the valid numerical ranges for x and y, in the format of |
distCalculator |
Defines the distance calculation algorithm. If |
prefixTree |
Defines the spatial grid implementation. Since a PrefixTree (such as RecursivePrefixTree) maps the world as a grid, each grid cell is decomposed to another set of grid cells at the next level. If |
maxLevels |
Sets the maximum grid depth for indexed data. Instead, it’s usually more intuitive to compute an appropriate maxLevels by specifying |
And there are others: normWrapLongitude
, datelineRule
, validationRule
, autoIndex
, allowMultiOverlap
, precisionModel
. For further info, see notes below about spatialContextFactory
implementations referenced above, especially the link to the JTS based one.
JTS and Polygons
As indicated above, spatialContextFactory
must be set to JTS
for polygon support, including multi-polygon.
All other shapes, including even line-strings, are supported without JTS. JTS stands for JTS Topology Suite, which does not come with Solr due to its LGPL license. You must download it (a JAR file) and put that in a special location internal to Solr: SOLR_INSTALL/server/solr-webapp/webapp/WEB-INF/lib/
. You can readily download it here: https://repo1.maven.org/maven2/com/vividsolutions/jts-core/. It will not work if placed in other more typical Solr lib directories, unfortunately.
When activated, there are additional configuration attributes available; see org.locationtech.spatial4j.context.jts.JtsSpatialContextFactory for the Javadocs, and remember to look at the superclass’s options in as well. One option in particular you should most likely enable is autoIndex
(i.e., use JTS’s PreparedGeometry) as it’s been shown to be a major performance boost for non-trivial polygons.
<fieldType name="location_rpt" class="solr.SpatialRecursivePrefixTreeFieldType"
spatialContextFactory="org.locationtech.spatial4j.context.jts.JtsSpatialContextFactory"
autoIndex="true"
validationRule="repairBuffer0"
distErrPct="0.025"
maxDistErr="0.001"
distanceUnits="kilometers" />
Once the field type has been defined, define a field that uses it.
Here’s an example polygon query for a field "geo" that can be either solr.SpatialRecursivePrefixTreeFieldType or RptWithGeometrySpatialField:
&q=*:*&fq={!field f=geo}Intersects(POLYGON((-10 30, -40 40, -10 -20, 40 20, 0 0, -10 30)))
Inside the parenthesis following the search predicate is the shape definition. The format of that shape is governed by the format
attribute on the field type, defaulting to WKT. If you prefer GeoJSON, you can specify that instead.
Beyond this Reference Guide and Spatila4j’s docs, there are some details that remain at the Solr Wiki at http://wiki.apache.org/solr/SolrAdaptersForLuceneSpatial4.
RptWithGeometrySpatialField
The RptWithGeometrySpatialField
field type is a derivative of SpatialRecursivePrefixTreeFieldType
that also stores the original geometry internally in Lucene DocValues, which it uses to achieve accurate search. It can also be used for indexed point fields. The Intersects predicate (the default) is particularly fast, since many search results can be returned as an accurate hit without requiring a geometry check. This field type is configured just like RPT except that the default distErrPct
is 0.15 (higher than 0.025) because the grid squares are purely for performance and not to fundamentally represent the shape.
An optional in-memory cache can be defined in solrconfig.xml
, which should be done when the data tends to have shapes with many vertices. Assuming you name your field "geom", you can configure an optional cache in solrconfig.xml by adding the following – notice the suffix of the cache name:
<cache name="perSegSpatialFieldCache_geom"
class="solr.LRUCache"
size="256"
initialSize="0"
autowarmCount="100%"
regenerator="solr.NoOpRegenerator"/>
When using this field type, you will likely not want to mark the field as stored because it’s redundant with the DocValues data and surely larger because of the formatting (be it WKT or GeoJSON). To retrieve the spatial data in search results from DocValues, use the [geo]
transformer — Transforming Result Documents.
Heatmap Faceting
The RPT field supports generating a 2D grid of facet counts for documents having spatial data in each grid cell. For high-detail grids, this can be used to plot points, and for lesser detail it can be used for heatmap generation. The grid cells are determined at index-time based on RPT’s configuration. At facet counting time, the indexed cells in the region of interest are traversed and a grid of counters corresponding to each cell are incremented. Solr can return the data in a straight-forward 2D array of integers or in a PNG which compresses better for larger data sets but must be decoded.
The heatmap feature is accessed from Solr’s faceting feature. As a part of faceting, it supports the key
local parameter as well as excluding tagged filter queries, just like other types of faceting do. This allows multiple heatmaps to be returned on the same field with different filters.
Parameter | Description |
---|---|
facet |
Set to |
facet.heatmap |
The field name of type RPT |
facet.heatmap.geom |
The region to compute the heatmap on, specified using the rectangle-range syntax or WKT. It defaults to the world. ex: |
facet.heatmap.gridLevel |
A specific grid level, which determines how big each grid cell is. Defaults to being computed via distErrPct (or distErr) |
facet.heatmap.distErrPct |
A fraction of the size of geom used to compute gridLevel. Defaults to 0.15. It’s computed the same as a similarly named parameter for RPT. |
facet.heatmap.distErr |
A cell error distance used to pick the grid level indirectly. It’s computed the same as a similarly named parameter for RPT. |
facet.heatmap.format |
The format, either |
You’ll experiment with different distErrPct values (probably 0.10 - 0.20) with various input geometries till the default size is what you’re looking for. The specific details of how it’s computed isn’t important. For high-detail grids used in point-plotting (loosely one cell per pixel), set distErr to be the number of decimal-degrees of several pixels or so of the map being displayed. Also, you probably don’t want to use a geohash based grid because the cell orientation between grid levels flip-flops between being square and rectangle. Quad is consistent and has more levels, albeit at the expense of a larger index. |
Here’s some sample output in JSON (with "…" inserted for brevity):
{gridLevel=6,columns=64,rows=64,minX=-180.0,maxX=180.0,minY=-90.0,maxY=90.0,
counts_ints2D=[[0, 0, 2, 1, ....],[1, 1, 3, 2, ...],...]}
The output shows the gridLevel which is interesting since it’s often computed from other parameters. If an interface being developed allows an explicit resolution increase/decrease feature then subsequent requests can specify the gridLevel explicitly.
The minX
, maxX
, minY
, maxY
reports the region where the counts are. This is the minimally enclosing bounding rectangle of the input geom
at the target grid level. This may wrap the dateline. The columns
and rows
values are how many columns and rows that the output rectangle is to be divided by evenly. Note: Don’t divide an on-screen projected map rectangle evenly to plot these rectangles/points since the cell data is in the coordinate space of decimal degrees if geo=true or whatever units were given if geo=false. This could be arranged to be the same as an on-screen map but won’t necessarily be.
The counts_ints2D
key has a 2D array of integers. The initial outer level is in row order (top-down), then the inner arrays are the columns (left-right). If any array would be all zeros, a null is returned instead for efficiency reasons. The entire value is null if there is no matching spatial data.
If format=png
then the output key is counts_png
. It’s a base-64 encoded string of a 4-byte PNG. The PNG logically holds exactly the same data that the ints2D format does. Note that the alpha channel byte is flipped to make it easier to view the PNG for diagnostic purposes, since otherwise counts would have to exceed 2^24 before it becomes non-opague. Thus counts greater than this value will become opaque.
BBoxField
The BBoxField
field type indexes a single rectangle (bounding box) per document field and supports searching via a bounding box. It supports most spatial search predicates, it has enhanced relevancy modes based on the overlap or area between the search rectangle and the indexed rectangle. It’s particularly useful for its relevancy modes. To configure it in the schema, use a configuration like this:
<field name="bbox" type="bbox" />
<fieldType name="bbox" class="solr.BBoxField"
geo="true" units="kilometers" numberType="_bbox_coord" storeSubFields="false"/>
<fieldType name="_bbox_coord" class="solr.TrieDoubleField" precisionStep="8" docValues="true" stored="false"/>
BBoxField is actually based off of 4 instances of another field type referred to by numberType. It also uses a boolean to flag a dateline cross. Assuming you want to use the relevancy feature, docValues is required. Some of the attributes are in common with the RPT field like geo, units, worldBounds, and spatialContextFactory because they share some of the same spatial infrastructure.
To index a box, add a field value to a bbox field that’s a string in the WKT/CQL ENVELOPE syntax. Example: ENVELOPE(-10, 20, 15, 10)
which is minX, maxX, maxY, minY order. The parameter ordering is unintuitive but that’s what the spec calls for. Alternatively, you could provide a rectangular polygon in WKT (or GeoJSON if you set set format="GeoJSON"
).
To search, you can use the {!bbox}
query parser, or the range syntax e.g. [10,-10 TO 15,20]
, or the ENVELOPE syntax wrapped in parenthesis with a leading search predicate. The latter is the only way to choose a predicate other than Intersects. For example:
&q={!field f=bbox}Contains(ENVELOPE(-10, 20, 15, 10))
Now to sort the results by one of the relevancy modes, use it like this:
&q={!field f=bbox score=overlapRatio}Intersects(ENVELOPE(-10, 20, 15, 10))
The score
local parameter can be one of overlapRatio
, area
, and area2D
. area
scores by the document area using surface-of-a-sphere (assuming geo=true
) math, while area2D
uses simple width * height. overlapRatio
computes a [0-1] ranged score based on how much overlap exists relative to the document’s area and the query area. The javadocs of BBoxOverlapRatioValueSource have more info on the formula. There is an additional parameter queryTargetProportion
that allows you to weight the query side of the formula to the index (target) side of the formula. You can also use &debug=results
to see useful score computation info.